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ABSTRACT p - 3  Y 

The Monte Carlo method is applied to the problem of determining the 

radiant heat transfer and emissive power distribution in an absorbing 

emitting nongrey gas with temperature-dependent properties contained be- 

tween infinite parallel black walls. The gas emissive power distribution 

is presented for the cases of no heat source and a parabolic distribution 

of heat sources in the gas. Calculations are carried out for hydrogen at 

temperatures in the range 5000° to 12,O0Go K. A comparison is made with 

various approximate methods and to the limiting diffusion and transparent 

solutions. The results indicate that the approximate solutions may be in 

considerable error. 

The problem of radiative heat transfer in a gas-filled enclosure is 

of considerable interest. The grey-gas assumption generally wed can be 

in error for several reasons: The total absoqtivity of a r e d  gas gen- 

erally does not folls-s - the emonentfal absorption law. There is difficulty 
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i n  choosing the  appropriate mean absorption coeff ic ient  f o r  a spec i f ic  

case. If there are l a rge  temperature var ia t ions i n  the gas o r  between 

t h e  gas and a w a l l ,  s ign i f icant  e r ro r s  can occur because of the chang- 

ing d i s t r ibu t ion  of energy with wavelength. A grey-gas assumption, 

with t o t a l  absorpt ivi ty  taken equal t o  t o t a l  emissivity i n  t h e  gas, 

cannot account f o r  these effects. 

coef f ic ien t  with temperature can also lead t o  considerable error.  

Ignoring the  var ia t ion  of absorption 

The problem of rad ia t ive  t r ans fe r  t o  real gases has been treated 

previously by Hottel  and Cohen [l], who have presented a method based on 

separating a gas volume i n t o  f i n i t e  isothermal elements and solving the 

r e su l t i ng  set of t r ans fe r  equations. 

mated by f i t t i n g  a summation of exponential terms. 

The real gas propert ies  are approxi- 

Another treatment of t h e  problem is  given by Bevans and Dunkle 121. 

The band approximation i s  used f o r  t h e  properties,  and f i n i t e  isothermal 

elements are assumed, The solut ion i s  obtained by the  network method. 

Deissler 131 extended t h e  diffusion approximation with jump bound- 

ary conditions t o  the  case of real gases but, as i n  111 and t21, does not 

f u l l y  accomt  f o r  t h e  effect of  temperature on t h e  gas properties. 

Some recent papers 141, [51 have applied the  Mor,te Carlo method 

used previously i n  t h e  f ie lds  of r a re f i ed  gas dynamics and nuclear trans- 

por t  t o  heat  radiation problems involving grey gases, 

applied herein t o  a nonisothermal gas rzdiative t r a n s f e r  problem where 

the absorption coefficient is allowed t o  vary with both wavelength and 

temperature. 

mation including temperature effects on the  absorption coeff ic ient ;  with 

Monte Carlo i s  

A comparison i s  d e  wlth t h e  modified diffusion approxi- 
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t h e  temperature dependent grey-gas solution; with the  temperature indepen- 

dent nongrey gas solut ionj  and with the  transparent approximation. 

!Fhe procedure consis ts  of following a '"bundle"* of energy through a 

Enough such bundles probable path u n t i l  f i n a l  absorption in  t h e  system. 

are followed t o  give s t a t i s t i c a l l y  meaningful results. 
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NOMENCLAT2RE 

constant i n  Planck energy distribution, 5. 9529X10'16 (h) (em 2 ) 

constant i n  Planck energy dis t r ibut ion,  1.4387 (cm) (%) 

energy per bundle, kw 

distance between i n f i n i t e  pa ra l l e l  plates,' cm 

emissive power, kw/m 2 

2x@, 
I 

Planck black-body emission distributiong 

heat  generation rate per un i t  volume, kw/m3 

increment index 

bundle path length t o  point of absorption nondimensionalized by D 

t o t a l  number of bundles or iginal ly  emitted per  u n i t  area 

energy per  u n i t  areaJ h/m? 

randomly chosen number i n  range from 0 t o  1 

number of bundles per  un i t  area 

temperature, OK 

normal dis tance from surface OJ nondimensiondized by D 

* These bundles cannot be considered photons s ince the  energy per bundle 
does not depend on wavelength. 
photons at a given wavelength such t h a t  a l l  bundles have equal energy, 

They rather represent a group o r  bundle of 

I 
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€ emissivity 

7 

K gas absorption coefficient, cm-l 

h wavelength, cm 

d 

angle to normal of surfaces 

Stefan-Boltzmann constant, 5 . 6 7 0 ~ 1 0 ' ~ ~  kw/( cm2) (v) 
7 optical thicknessj KD 

Planck mean optical thickness (eq. (10)) 

Rosseland mean optical thickness (eq, (B13)) 

TP 

TR 

Subscripts: 

A 

A-AX 

b 

g 

i 

m a  

t 

W 

X 

ax 
h 

4 

0-1 

1 I 

surface 

originally emitbed at A, absorbed in Ax 

black: wall emilssivity of 1 

gas 

gas increment nmber 

maximum value 

total 

of the wall 

at point x 

gas increment 

wavelength dependent 

of surface 0 

emitted at 0, absorbed at 1 

-.P "r.l..fnmd 1 
V I  0LLJ.J.ubb 

Superscript: 
- 

bar over any term denotes value integrated over wavelength range nh 
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ANALYSIS 

The radiant  energy t r ans fe r  and t h e  temperature d i s t r ibu t ion  are found 

f o r  a nongrey nonisothermal gas between i n f i n i t e  p a r a l l e l  w a l l s .  Only the  

case of black walls w i l l  be treated, but extension t o  nongrey w a l l s  i s  

straightforward. The r e f r ac t ive  index of  the  gas i s  assumed t o  be 1. Two 

solut ions are obtained: one f o r  t h e  walls at unequal temperatures and with 

no heat sources i n  the  gas and t h e  other f o r  both walls a t  the same tempera- 

t u r e  and a parabolic d i s t r ibu t ion  of hea t  sources i n  t h e  gas. 

studied is  shown i n  f igu re  1. 

The geometry 

No energy source i n  t h e  gas. - The computer flow chart  f o r  t h i s  case 

i s  shown i n  figure 2. 

As derived i n  appendix A (eq. ( A 4 ) ) ,  when a bundle is emitted from 

w a l l  0 (l)*,. i ts  wavelength is determined from 

,6" EhOebhO 

lm EhO%hO ah 

R =  

where R is a random number i n  the  range 0 t o  1, €10 is  t h e  emissivity, 

md %ho the black emissive power d is t r ibu t ion  of surface 0. By in te -  

gra t ion  of (l), a re l a t ion  

temperature. 

h = FO(R) is obtained f o r  a given surface 

If t h e  surface is  assumed t o  e m i t  diffusely,  t h e  d i rec t ion  of the  

e m f t . t . 4  bundle is shown in  reference [41 t o  be 

* The numbers i n  brackets ( )  correspond t o  those i n  f igu re  2. 
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cos q = 4 
The dis tance the bundle travels before absorption i n  the gas i s  given 

i n  appendix A by equation (A9)  as 

where ZA = D K ~  is t h e  monochromatic gas opt ical’ thickness .  If it is 

assumed tha t  the gas is divided in to  1/& increments, each with an 

absorption coeff ic ient  K A , ~ ,  the increment i i n  which absorption occurs 

can be found by writ ing (3) as 

and carrying out t h e  summation u n t i l  the inequal i ty  is satisfied (2). 

Since the  absorption coeff ic ient  is temperature dependent, solution of 

(4) requires  a p r i o r i  knowledge of  the temperature d i s t r ibu t ion  across 

t h e  channel. This necessi ta tes  an i t e r a t i v e  procedure* 

If the  increment number i is  greater  than the number of increments 

ava i lab le  (3), then t h e  bundle must be absorbed by black surface 1. If 

t h e  bundle is  absorbed i n  the  gas, then t h e  normal dis tance from surface 0 

a t  which absorption occws, x, is found (5). The bundle is t a l l i e d  as 

being absorbed i n  increment i (6). Since the  gas is at  t h e  steady state, 

a new S u ~ d l e  must be emitted f rom x. Its wavelength is  determined f r o m  

I - \  ( R j  , ( I 1,  as ca,ic-d~,t& frm eqcstinn (AS) i n  appendix A. The 

x i n  the gas is shown i n  refer- 

= Fg,, 

d i rec t ion  of emission from any point 

ence [4] t o  be given by 

cos 7 = I - 2% 
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4 

This d i rec t ion  is examined t o  determine whether it is  toward surface 0 

o r  surface 1 (8). 

absorbed i n  the  same increment 

x is  found (lo), (ll) and t h e  bundle i s  again ta l l ied and reemitted ( 6 ) ,  

etc.  If not, t h e  increment I i n  which it is absorbed is calculated (12), 

A check is made t o  determine whether t he  bundle is re- 

f (9). If so, the new point of i$bsorptian 

again by modioing equation (3). 

ber (13) t o  see whether the  bundle reached the  wa l l .  

a t  t ha t  wall, (14). If not, the point of absorption x is calculated (ll), 

and the bundle is tallied (6)  and reemitted as before. 

followed u n t i l  absorption a t  a wall. 

A check is  made of the  increment num- 

If so, it is tall ied 

The procedure is 

Enough such paths are t raced t o  give 

s t a t i s t i c a l l y  meaningful. results. 

A similar procedure is  then followed f o r  those bundles emitted f rm 

surface 1. 

The ne t  energy t ransfer red  t o  surface 1 is  

where SA-B is defined as t h e  number of bundles emitted at surface A 

per  u n i t  area that are absorbed at  surface B. The term cA is the 

energy per bundle emitted from surface A, and i s  defined by 

where NA is t h e  t o t a l  number of bundles emitted per u n i t  area from A. 

For t h e  case of black walls, equation ( 6 )  becomes 
-. 
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The emissive power of a gas volume of width & is obtained from the  

number of bundles emitted i n  the  gaq volume: 

(9) 

is the number of bundles absorbed and therefore  reemitted where 'A-Ax, i 

i n  the  volume element i of width Ax t h a t  originated 4% surface Ay 

is the  Planck mean optical thickness i n  increment i and is  and ZP,i 

defined as 

t3 7P = e 

The emissive power d is t r ibu t ion  i n  t h e  gas is then 
Y 

G s s  with parabolic source d is t r ibu t ion  between plates at  equal tem- 
1 

peratures. - The flow chart f o r  t h i s  case is  also shown i n  f i g u r e  2. A 

parabolic d i s t r ibu t ion  of heat sources of t he  form 

is  assumed, where G is the heat generation rate per u n i t  volume. The 

problem is t o  f ind  the  emissive power d i s t r ibu t ion  i n  the  gas. 
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The emissive power is re l a t ed  t o  the number of emissions i n  the  gas 

where (S is the  t o t a l  number of bundles emitted i n  a volume element 

Ax around point i and includes or ig ina l  emissions and reemissions after 

absorption of bundles or iginat ing i n  o ther  elements. 

give t h e  energy absorbed from t h e  walls. 

) g r B  i 

The last  two terms 

The energy per bundle or ig ina l ly  emitted i n  t h e  gas cg is defined 

as 

where  N is the t o t a l  number of bundles or ig ina l ly  emitted i n  the gas. 

From t h e  assuaption of equal w a l l  temperatures w e  can reduce equa- 
Q 

t i o n  (11) t o  the  iden t i ty  I 

SO-AX, i + Sl-A?S,i 
NO N1 %P,i = 

Subst i tut ing t h i s  r e l a t ion  i n t o  equation (13) gives 
1 

The Monte Carlo program is essent ia l ly  t h a t  described i n  the previous 

sect.inn except t h a t  bundles or iginate  within t h e  gas at  points determined 

by t h e  function x = FS(R), as derived i n  appendix A (ea. ( A l l ) ) ,  rather 

than at t h e  surfaces. 
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Sample problem. - The calculations were carr ied out f o r  hydrogen i n  

The absorption coef f ic ien t  t he  temperature range of 5000' t o  12,000° K. 

as a function of t e m p e r a t u r e  and wavelength used i n  t h e  problem is shown 

i n  figure 3(a). The mean absorption coeff ic ients  calculated from th i s  

da ta  and used i n  t h e  comparison solutions are shown i n  figure 3(b). 

data is from reference [6], and is based on ana ly t ica l  calculations.  

absorption coeff ic ient  was assumed zero autside t h e  range 

The 

The 

bin < A < hx. 
The Monte Carlo solut ion is compared with the d i f fus ion  solut ion with 

jump boundary conditions f o r  th i s  spec i f ic  problem. The diffusion solut ion 

given i n  appendix B follows Deissler  [31 but extends h i s  results t o  in- 

clude the var ia t ion  of absorption coeff ic ient  across the channel. 

The diffusion solut ion uses t h e  Rosseland mean absorption coef f ic ien t  

KR 

small over parts of t h e  spectrum, the value of 

by t h i s  portion of t he  spectrum. 

as defined by equation (B13). I f  t h e  absorption coef f ic ien t  is very 

KR 

Because of this ,  t he  problem must be 

is weighted excessively 

solved i n  two parts. 

Coefficient t he  diffusion solut ion is used, and over t h e  remainder t h e  gas 

is considered transparent. 

Over t h e  spectrum range with appreciable absorption 

The results f o r  the  example are a l s o  compared with t he  Monte Carlo 

temperature-dependent solut ion based on t h e  Planck mean absorption eoeff i -  

c i e n t  of t h e  gas i n  each increment as defined by equation (lo), and with 

the Monte Carlo solut ion using t h e  wavelength-dependent absorption coeff iP 

c i en t  evaluated st z ~ e m g e  %eqera ture .  Limiting exact solut ions f o r  

op t i ca l ly  th ick  and transparent gases are also given. 
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RESULTS 

No gas heat sources. - The net heat t ransfer red  between the  heated in- 

f i n i t e  black p l a t e s  enclosing hydrogen is shown i n  figure 4. 

of p l a t e  0 WELS taken as 9500' K, and of p l a t e  1 as 4500° K. The results 

are shown f o r  d i f fe ren t  d u e s  of p la te  spacing The gas was assumed 

transparent at wavelengths less than 0.15~10'~ or g rea t e r  than 2 ~ 1 0 ' ~  cm, 

Comparison of the exah Monte Carlo so lu t ion  t o  the  wavelength- 

The temperature 

D. 

dependent, temperature-independent absorption coeffi c ien t  

shows a lower heat- t ransfer  rate for the  exact solution. This is  because 

t h e  wavelength-dependent gas absorption coef f ic ien t  is  evaluated a t  7000° K, 

t h e  average of t h e  w a l l  temperatures. 

curve of gas absorption c e f f i c i e n t  with temperature (fig. 3 (b) )  near the 

higher w a l l  temperature indicates  that  a higher mean gas temperature should 

be used t o  evaluate 

K(  A,Tc) so lu t ion  

However, t he  l a r g e r  slope of t h e  

P 

K(h,Te) f o r  t h i s  case. i 

Also shown is t he  Monte Carlo solution using a temperature-dependent 

Planck mean absorption coefficient,  Kp(T) ., vhich gives lower h e a t  travlsfer 

than t h e  exact solut ion because the  mean absorption coef f ic ien ts  are 

weighted according t o  t h e  Planck energy d i s t r ibu t ion  based on the  local 

gas temperature (eq. (10)). 

c i en t  i n  t he  wavelengths where t h e  local Planck energy d is t r ibu t ion  is a 

maximum. 

d i s t r ibu t ion  based on its source energy spectrum. 

t h i s  gives  an exaggerated s b s o q t i o n  cnef f fc ien t  f o r  ealcylat ing the energy 

absorbed f r o m  the  hot wall and a consequently smaller heat t r a n s f e r  than 

t h e  exact solution. 

This gives most weight t o  the  absorption coeffi-  

The energy absorbed locally,  however, w i l l  have a wavelength 

I n  t h e  present case, 
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The modified diffusion solut ion derived i n  appendix B i s  i n  close agree- 

lfient with the  Monte Carlo solut ion using t h e  Planck mean absorption coeff i -  

c ient ,  

a temperature-dependent mean Absorption coefficient.  

is  i n  better agreement with the exact solut ion as the  p l a t e  spacing i s  in- 

creased. 

coeff ic ient  as a parabolic form, however, s t i l l  introduces some error.  

This agreement might be expected, s ince both solut ions are based on 

The diffusion solut ion 

The approximation of the  temperature dependence of t h e  absorptiozl 

The gas emissive power d is t r ibu t ions  f o r  various p l a t e  spacings are 

shown i n  figure 5, 

perature  surroundings viewed and the absorption coeff ic ient ,  

example shown, elements near t he  hot wall a t t a i n  equilibrium temperatures 

c lose  t o  t he  hot w a l l  temperature. 

readily influenced by the  hot w a l l ,  especially f o r  large p la t e  spacing, 

because the large absorption coeff ic ient  in t he  ho t t e r  portion of the  gas 

masks t h e  hot wall. This leads t o  t h e  l a rge  emissive power gradient near 

the  hot  wall f o r  cases with temperature-dependent absorptfon coefficient.  

The l o c a l  gas emissive power is  dependent on t h e  tem- 

For the 

Elements near the  cold w a l l  are less 

Tn figure 5(a), t h e  exact solutions f o r  var ious p l a t e  spacings are 

shown. The l imi t ing  solut ions D - 00 and D + 0 are given i n  appendixes B 

and C, respectively. 

the emissive powers of the  d l  and the  gas at the  wall become smaller and 

approach zero as t h e  p l a t e  spacing becomes very large.  

approaches zero9 t h e  emissive power becomes constant s ince any gas element 

views both &is e q u d i y  ~ ~ 1 1 .  

emissive powers of t h e  walls as would be the  case f o r  a grey gas, 

reason is that t h e  wavelength-dependent absorption coef f ic ien t  I s  lower f o r  

As the  p l a t e  spacings ge t  la rger ,  the j m p  between 

As the  p l a t e  spacing 

Tkle cnnshn t  i s  not t h e  average of t he  

The 
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the wavelengths of energy leaving the hot wall and is comparatively large 

at the wavelengths of local gas emission, which leads in turn to an equi- 

libPium temperature newer that of the cold wall. 

Figures 5(b) and (c) compare the exact Monte Carlo solutions with 

The agreement is various approximate solutions at two plate spacings. 

seen to be better at a small plate spacing, since the temperature range, 

and therefore the variation in absorption coefficient with temperature, 

is less. 

coefficient solution gives emissive power distributions with less slope at 

the hot wall than the exact solution, since there is no temperature effect 

on the absorption coefficient, 

The wavelength-dependent, temperature-independent absorption 

The temperature-dependent Monte Carlo solution using a Planek mean 

absorption coefficient gives curves of shape similar to the exact solution, 

but of higher values of gas temperature. This is again due to the erroneously 

high absorption of energy in each element because of the large mean absorption 

coefficient computed on the basis of the local gas temperature. 

becomes smaller for optically thick gases. 

l3is effect 

The slope near the walls for the modified diffusion solution does not 

correspond to the exact solution, especially at the smaller plate spacing, 

because the effects of the wall a r e  only included in the emissive power 

jump at the wall, and not in the gas away from the wall. 

spacing becomes larger, this approximation improves, 

however, the results are stili poor 5eoc1mse of the low absorption coeffi- 

cient there. 

As the plate 

At the cold wall, 
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Parabolic heat source i n  t h e  gas. - For a symmetrical d i s t r ibu t ion  of 

heat sou.rces between black walls a t  equal temperatures, t he  heat tra.nsferred 

t o  each w a l l  i s  equal t o  one-half tine t G t a l  heat  generated. 

The emissive power d is t r ibu t ion  i n  the  gas is  shown i n  figure 6(a) f o r  

t h e  exact solut ions f o r  various values of t h e  p l a t e  spacing D. The l i m i t -  

ing transparent solut ion is  given i n  appendix C. 

become higher at  l a rge r  p l a t e  spacing because of t h e  increasing d t f f i c z l t y  

of t ransfer r ing  heat t o  t h e  w a l l s  from posi t ions near the  centerline. 

The gas temperatures 

I n  f igures  6(b) and (e) ,  t he  simplified solut ions a re  compared with t h e  

exact solut ion f o r  a la rge  and small p l a t e  spacing. 

The various approximate Monte Carlo solut ions give ex-el lent  agreement, 

t o  the  exact solut ion f o r  t he  smaller p l a t e  spacing be-awe of the  s m G . 1  

t emperatme var ia t ions i n  the  enclosure. 

The t diffusion solut ion gives be t t e r  agreement w%th increasing plat.? 

spacing and higher temperatures, where the  absorption coeff ic ienfs  are 

larger ,  1% f igure  7, t h e  difference between t h e  gas center l ine and wall 

emissi.ve powers is plot ted f o r  t h e  exact Monte Car lo  solution. This i s  

compared t o  t h e  two l imit ing solutions: -The di.ffusion solution, app1.icabl.e 

f o r  l a rge  p l a t e  spacing, and t h e  transparent approximation f o r  small p1tz't.f: 

spacing, The exact sglut ion i s  seen t o  approach the  l imi t ing  sol.utions, 

GGNc.T;J3IONS 

The results ind ica te  t h a t  f o r  gases with la rge  opt ica l  thickness t h e  

diffusion approximation modified for  temperature-dependent absopption 
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coeff ic ient  is applicable. 

are applicable. 

spectrum so that d i f f e ren t  solut ions a re  used i n  d i f f e ren t  regions. 

I n  t h e  other extreme, t h e  transparent solut ions 

It may be possible i n  cer ta in  cases t o  divide the  energy 

I n  general, however, t h e  diffusion o r  transparent assumptions o r  the 

use of temperature and/or wavelength independent absorption coeff ic ients  

can lead t o  very misleading resul ts .  

predict  the  magnitude o r  s ign of the error,  s ince  it will strongly depend 

on the properties of t he  pa r t i cu la r  gas. 

In  addition, it is  very d i f f i c u l t  t o  

The Monte Carlo method is flexible enough t o  remove any o r  a l l  of the  

above assumptions, and can be modified t o  include other effects such as 

scat ter ing,  norgrey and/or nondiff'use walls, etc. These would be extremely 

d i f f i c u l t  t o  include i n  other  methods. 

Monte Carlo is relatively easy to  program, and i ts  chief drawback is  

However, s ince t h i s  is  t h e  l a rge  yse of computer time i n  complex cases. 

prcibably t h e  only way of obtaining solutions i n  such cases, t h i s  use is  

generally justified. 
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APPENDIX A 

DERIVATION OF MONTE CARLO RELATIONS 

Determination of wavelength of  bundle emitted from a surface. - The 

t o t a l  energy per un i t  area emitted from surface A is 

and the  frequency d i s t r ibu t ion  of energy i n  a wavelength band dh is  

€hAehb,A 
nw f*(N = 

Transforming t o  a uniform density d i s t r ibu t ion  by means of the cumula- 

t i v e  d i s t r ibu t ion  f’unction 

gives 

R =  
PW 

‘hAehb,A 

If R is  taken as a random number in  t h e  range of 0 t o  1, then (A4) car1 be 

solved f o r  the wavelength of emission h, 

Determination of wavelength of bundle emitted from a gas. - For  

emission from a gas, a similar procedure y ie lds  
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R =  FKAegj 
V g , h  

i 

Determination of bundle path length t o  absorption. - The number of 

bundles dN t h a t  w i l l  be absorbed i n  a noridimensional distance dZ divided 

by t h e  number of bundles or ig ina l ly  emitted is 

-T\N dZ 
= fn  dN - =  

NO NO 

Solving f o r  N/No and subs t i tu t ing  above gives 

fn  dZ' = 'Th exp 

This can be transformed t o  t h e  uniform d i s t r ibu t ion  
I- 1 

R -$ fn dZ' = 1 - exp TA dZ' 

2 

Since R is evenly d is t r ibu ted  between 0 and 1, it can be replaced by 

1 - R t o  give 

Paint  of emission of bundle i n  gas f o r  gas heat source case. - If an .. 
energy d i s t r ibu t ion  of t h e  form given by equation (12) is assumeci, iile 

cumulative d i s t r ibu t ion  is 
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G(x')dx' 

G(x')dx' 
R =  

J' .'- 

= 2x2[(3/2) - X I  

It can be shown by Rolle's Theorem and i t s  co ro l l a r i e s  [71 t h a t  t h i s  equa- 

t ion,  which must be solved f o r  x 

real root  i n  the  range of i n t e r e s t  and t h a t  t h i s  root  i s  

i n  terms of R, has one and only one 

where 

I' = cos'l(1 - 2R) 

* 



APPENDIX B 

MODIFIED D I F F U S I O N  SOLUTION 

From the diffusion solution as derived by Deissler [31, the  emissive 

power of a gas near point x can be expressed i n  a Taylor s e r i e s  as 

for the geometry considered herein. r .  

The emission at wavelength h from a gas element dV which passes 

through an elemental area dA f rom above is  

+ Kh,xegh( dV dA cos 11 exP[-Kh,xPl 

P2 
d E h  = (B2) 

0 

where p is  t h e  distance between the  volume element dV and the  plane 

i s  assumed constant i n  the  region near point x. A, x element dA, and K 

Integrat ing over t he  e n t i r e  volume above dA gives 
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I 

Similarly, the energy passing through dA from below i s  

m 

Then the  net  radiat ion per un i t  area i n  the d i rec t ion  x a t  wave- 

length h i s  

W 

%?he terms i n  t h e  summation i n  (E) are  0 for any even n. 

To evaluate t h e  jump i n  emissive power between t h e  gas and the  w a l l  at 

t h e  wall, assume an element dA s l igh t ly  below w a l l  1. Then the energy 

passing downward through dA at wavelength h 

Combining (B4), (S), and (B6), all evaluated at w a l l  1, gives 

Similarly,  f o r  surface 0, 

-qao 
9 0  - =  egh,O - ebh,O -t 

n=l 

is neglected t o  higher order der ivat ives  than 2, (E) be- If eg,h 

comes 
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Evaluating the  boundary conditions under a similar r e s t r i c t i o n  gives 

(B11) . 

Integrat ing equation (B9) over a wavelength range AA gives 

deg h 

where t h e  bar denotes an in tegra t ion  over t he  wavelength range Ah. 

i s  defined by 
- 

The Rosseland mean absorption coefficient,  KRtX 

Similarly, a f t e r  subs t i tu t ing  (B9) i n t o  (B10) and 

ing grey w a l l s ,  t h e  boundary conditions are integrated 

(Bll), and assum- 

t o  



- 22 - 

where 

and 

The der iva t ive  terms i n  (B13), (B16), and (B17) are found by subs t i tu -  

t i o n  of e f o r  0T4 i n  Planck's energy d is t r ibu t ion ,  and then taking t h e  

appropriate derivative.  
g g 

If a parabolic heat source d is t r ibu t ion  of the form of equation (12) 

i s  assumed, a heat balance on a gas element of width dx yie lds  f o r  t h e  

wavelength band ah 

a,. = 4DG,,,,, 
" /  

-A 
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The opt ica l  thickness of t he  gas may be assumed of t h e  form 
- 

(B19) 'Tp+ = AX2 + BX c 

Higher-order terms could be used if  necessary f o r  a spec i f i c  problem. An 

i t e r a t i v e  solut ion i s  necessary, since a temperature d i s t r ibu t ion  must be 

known t o  evaluate the  constants i n  (B19). 

Using (B19) and (B18) t o  integrate  (B12) and evaluating the  boundary 

conditions, w e  f i nd  after lengthy algebraic manipulation t h a t  t h e  heat 

t ransfer red  f o r  the  no heat source case with w a l l s  a t  d i f f e ren t  tempera- 

t u re s  i s  

A correction added t o  the  heat t ransfer  needed t o  include t h a t  energy 

outs ide t h e  wavelength band considered is  

(B20a) 
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This correction had a value of 0.0212 f o r  the wall temperatures in the 

example. 

The emissive power distribution for the same case is 
I 

For a parabolic heat source between black walls at equal temperatures, ~ 

1 3~~~ma.x - 3B + 5 (.2 + + 3c) f..:-.) To=T1 
‘ - 64TOD 16Fg,o 8 

- L 
3 

In order to find the total heat transferred between the two surfaces 

for the example problem, the correction given by equation (B20a) must be 

added to (B20). To find the total emissive power at point x in the gas, 

e 

e to e 

a correction must be applied to equations (B21) and (B22) to change g7x 

g,x 
- 

This correction is given by g,x’ 
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The constants A, B, and C i n  equations (B19) t o  (B22) were calcu- 

l a t e d  at  x = 0, 0.5, and 1 for t h e  solut ion given. 

For the  no gas heat  source case, t h e  l imi t ing  solut ion f o r  l a r g e  D 

can be found from equation (B12) s ince t h e r e  i s  no jump i n  t h e  w a l l  

boundary conditions. The solut ion i s  

Jo 
This so lu t ion  i s  a l s o  iterative, and is  exact i n  the  l i m i t  D --+ 00. 

Again t h e  emissive power e must be obtained from the r a t i o  %/e given 

by equation (B22a). 
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APPENDIX c 

"SPARENT GAS APPROXLM.A!FION 

If we assume t h e  p l a t e  spacing D small enough t h a t  t he  gas opt ica l  

thickness i n  any element 

of energy i n  the  gas. 

then gives 

~ h , i  is small, w e  can neglect t h e  attenuation 

An energy balance on an isothermal element Ax 

f o r  the general problem of black surfaces a t  unequal temperatures enclosing 

a real  gas with d is t r ibu ted  energy sources. For no energy sources, in te -  

gra t ing  over KL1 wavelengths y i e lds  

For equal surface temperatures and a parabolic heat source dis t r ibut ion,  
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F igu re  3. - P r o p e r t i e s  of hydrogen gas .  
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Properties of hydrogen gas. Figure 3. - Concluded. 
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Figure 5. - Continued. Emissive power d i s t r i b u t i o n  i n  
hydrogen between p a r a l l e l  p l a t e s ;  no gas h e a t  source; 
p l a t e  temperatures:  To = 9500' IC; TI = 4500° K. 
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~ : g u r e  5. - Concluded. Emiss ive  power d i s t r i b u t i o n  
i n  hydrogen between p a r a i i e i  p l a t e s ;  E(? gas h e a t  
s o u r c e ;  p l a t e  t e m p e r a t u r e s :  To := 9500° K; 
Ti = 4500' K. 
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F igu re  6.  - Emissive power d i s t r i b u t i o n  i n  hydrogen 
between p a r a l l e l  b l ack  p l a t e s ;  p a r a b o l i c  h e a t  source ;  
p l a t e  temperatures:  
0.145 kw/cm3. 

T, ::= TO = TI = 7000° K; GMAX = 
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F igure  6 .  - Continued. Emissive power d i s t r i b u t i o n  
i n  hydrogen between p a r a l l e l  b l ack  p l a t e s ;  pa rabo l i c  
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F i g u r e  6 .  - Concluded. Emissive power d i s t r i b u t i o n  in 
hydrogen between p a r a l l e l  b l a c k  p l a t e s ;  paraboli:  h e a t  
source ;  p l a t e  tempera tures :  Tw = TO = T1 = 7000 K; 
GMAX = 0.145 kw/cm3. 
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